JOURNAL OF AIRCRAFT
Vol. 32, No. 2, March-April 1995

Hypersonic Inviscid and Viscous Flow over a Wedge and Cone

K. K. Leung* and G. Emanuelt
University of Oklahoma, Norman, Oklahoma 73019

An analysis of hypersonic flow over a wedge and cone is developed that is based on hypersonic small-
disturbance theory in combination with laminar boundary-layer theory. The parameters that determine the
flow are the ratio of specific heats (=1.4), the freestream Mach number, which ranges from 4 to 10, the wall
half-angle, equal to 5, 10, or 15 deg, a wall to freestream temperature ratio, equal to 1 or 3, a Reynolds number
(=10°), and a geometric parameter that is zero for a wedge and unity for a cone. All results are nondimensional
and in a convenient form for establishing trends or for comparisons with experimental or CFD data. Results
are provided for the inviscid surface values of the pressure, temperature, and Mach number; wave and viscous
drag coefficients and several heat transfer coefficients; the maximum temperature and its location inside the
boundary layer; and a variety of viscous and thermal boundary-layer thicknesses. The independent parameter
is the freestream Mach number; the dependence on the wall to freestream temperature ratio and a Reynoids

number are explicitly given.

Nomenclature

area

drag coefficient

specific heat at constant pressure

= drag

= boundary-layer stream function

= stagnation temperature ratio, 7,/T,,

= hypersonic similarity parameter, M..8

= hypersonic similarity parameter, M.,.0

= body length

= Mach number

= coordinate normal to the wall

= Prandtl number

pressure

global heat transfer parameter

heat transfer

freestream dynamic pressure, fyp, M2

= freestream Reynolds number, (pU/n)..

= boundary-layer Reynolds number, (pu/p),s
Reynolds number based on wall length,

(p/p NT.IT,)(u./U.)(Re,/cos 6,.)

= radial coordinate

speed parameter,

[(y — DRIML + [(y ~ D2IM3)

= Stanton number

coordinate along the wall measured from the apex
temperature

freestream speed

flow speed parallel to the wall

= shock wave angle

= ratio of specific heats

= velocity boundary-layer thickness, equals » when
fr=0.99

thermal boundary-layer thickness, equals n when
(g — &) = 0990 - g,)

= displacement thickness, [; [1 — (pu/p.u.)] dn
similarity variable, [(pu).r2/(2€)'] 3 (p/p.) dn
= velocity angle relative to the centerline
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0 = momentum defect thickness,
Ji (pulpu {1 — (w/u,)] dn
k = thermal conductivity
M = viscosity
¢ = boundary-layer wall coordinate, (puu),s(3s> sin’6, )"
p = density
o = (for a wedge, | for a cone
7 = shear stress
¢ = stagnation enthalpy defect thickness,
Ji CGoulpu )t = (T, — To)(To. — To,)] dn
Subscripts
b = base
¢ = cone
d = conditions just downstream of the shock
¢ = boundary-layer edge
m = temperature maximum inside the boundary layer
v = viscous
w = wall, wedge, or wave
0 = stagnation
* = freestream
Superscripts

derivative with respect to n
indicates s is replaced with / sec 6,

Introduction

YPERSONIC flow over simple shapes has been of in-

terest for some time.'- Previous studies often focus on
a specific application or phenomenon such as viscous inter-
action. There is thus a need for a simple inviscid/viscous treat-
ment of flow properties and parameters associated with hy-
personic flow over a wedge and cone at zero incidence. Our
objective is to provide trends in a convenient format for com-
parison or correlation with experiment or other theoretical/
computational studies. Thus, the direction of a trend can be
assessed, and the possible need to incorporate additional fac-
tors, e.g., base drag, established. Moreover, this approach
can be the starting point for more elaborate analysis. For
example, the maximum temperature formulation can be used
to assess the onset of vibrational relaxation, air dissociation,
or radiative heat transfer.

Hypersonic small-disturbance theory (HSDT) is combined
with a laminar boundary-layer analysis. The analysis assumes
a nonreacting perfect gas with no radiative heat transfer. The
freestream Mach number M. and cone or wedge half angle
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6,.. satisfy the hypersonic small disturbance requirement that
K, is of order unity. Hence, the bow shock is attached and
viscous interaction is neglected. For the boundary layer, the
wall is assumed to have a constant temperature, and the Prandtl
number and Chapman-Rubesin parameter are unity.?

Nondimensional results are determined by v, M., 6., T../
T,, o, and Re,. For these parameters we take y = 1.4, 4 =<
M, =10,6, = 5,10, 15deg, T,./T,. = 1, 3, and Re, = 10°.
The upper limit on M., stems from the neglect of viscous
interaction, real gas effects, and radiative heat transfer. When
M., = 10 some of these effects may start to become significant.
The ranges chosen for M, and 6, yield 0.349 = K, = 2.62,
which is a nominal range for hypersonic flight. The temper-
ature ratios of 1 and 3 are, respectively, for cold and hot wall
surfaces. One Reynolds number value is sufficient, since those
quantities that depend on it scale as Re, . Moreover, for a
sharp cone or wedge with a smooth surface in free flight, the
laminar regime corresponds to a Reynolds number well in
excess of 10° (Refs. 4 and 5).

Results are presented in four categories. The first provides
inviscid surface conditions for the pressure, temperature, and
Mach number. The next group consists of wave and viscous
drag coefficients and two heat transfer coefficients. Base drag
is not included, i.e., the base pressure is assumed equal to
p... One heat transfer coefficient is the local Stanton number,
whereas the second coefficient is the global heat transfer that
is conveniently normalized in a manner similar to the drag
coefficients. The third group provides the maximum temper-
ature inside the boundary layer and its location in both the
transformed and physical planes. The last group contains re-
sults for commonly encountered viscous and thermal thick-
nesses. These include the velocity, thermal, displacement,
momentum defect, and stagnation enthalpy defect thick-
nesses.

In line with the above goals, it is more convenient to use
M., as the principle independent parameter rather than K,.
This choice is partly motivated by the dominance of viscous
results for which M., is an appropriate choice. Thus, result
figures contain six curves, three for the wedge and three for
the cone, where the curves correspond to the different 6,
values. Hence, for a given parameter, more than one figure
is required only when T,./T., is significant. Further details and
results can be found in the thesis® on which this article is
based.

Formulation

For purposes of clarity, we succinctly summarize the HSDT
and boundary-layer equations. The shock wave angle B (see
Fig. 1) and velocity turn angle 6, are related by

2 14 [(y — D2}M2sinB
+1 M2 sin B cos B

tan(g — 6,) =
Y
With the introduction of the HSDT limit, we have

2 1+ [(y - D2]K3
K, — Ky (v = 121K

Tyt 1 K,

In the wedge case, the inviscid flow between the shock and
wedge is uniform and 6, is replaced with 6 (=6,), with the

result
+1 +1 V1"
Y Y
Kg, = """4— K, + |:l + ( 1 KH) :I

In the cone case, 6, # 6, and the approximation’

Kpe = {1 + [(y + DR2]JK3"

is utilized, where again 8 = 6,.

HYPERSONIC FLOW

Fig. 1 Schematic for flow over a wedge or cone.

For the wedge, it is sufficient to write the exact planar shock
jump conditions and apply HSDT to directly obtain

Pe 2 R y—-1
—_— = K“,_
P 7+1<y o 2 >

T, 2 1+[(y - DR2K3 pe

T, y+1 K3 p-

P {1 + [(y — 1)/2]1<;,‘}"2
Ko — Ky YK — [(v - D)2]

u _ M, (1"
U, M\T,
Similar HSDT results for the cone® are

Pe _ L)L 1+ [(v + DR2IKE (K
= 1+ yKs {2 L [(y — D2IK; " K,

T, 1 K.
=1+ (y- DKz + nl|=5
Tiroeeb “[2 / <K9>}

12
U _ .| ] K. _ T\ u
bt ()] o ()

Table 1 compares HSDT and exact results just downstream
of the shock and on the surface. Two cases are shown, both
have K, = 1.047, where the exact results for the cone stem
from Sims.” Agreement between HSDT and the exact results
is excellent. The largest error is in the M., (or M) wedge value
when M., = 4, where the error is —10%. This error does not
extend to the other M., = 4 wedge values, e.g., the p./p.. (or
p./p-) value is in error by only 1%. Moreover, it does not
extend to the M, = 4 cone case, where the error in M, is
only 0.6%. The error in M, for a wedge rapidly decreases
with M_; it isonly ~4% at M, = 6.

In line with the earlier discussion, the boundary-layer pres-
sure gradient parameter is zero and a similar solution is as-
sumed. We thus have the Blasius equation

%

'\]

ffEfr=0 fo=fl=0, fe)=1 (1)

where (1/u,) = df/dn = f'. The solution of the energy equa-
tion is

(& — &)1 —g)=f
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Table 1 Comparison of exact and HSDT solutions just downstream of the shock and on the surface
for a wedge and a cone
M. = 4,6, = 15 deg M. = 6,6, = 10deg
Wedge Cone Wedge Cone
Exact HSDT Exact HSDT Exact HSDT Exact HSDT
B, deg 27.06 25.92 21.79 21.80 17.59 17.28 14.35 14.53
M, 2.929 3.225 3.321 3.286 4.648 4.837 5.124 5.074
M, 2.929 3.225 3.217 3.197 4.648 4.837 4.993 4.966
PJip- 3.697 3.653 2.406 2.535 3.668 3.653 2.414 2.535
Plp-. 3.697 3.653 2.801 2.858 3.668 3.653 2.810 2.858
T,T., 1.547 1.539 1.310 1.335 1.541 1.539 1.312 1.335
T.IT, 1.547 1.539 1.368 1.383 1.541 1.539 1.370 1.383
which vyields the quadratic® in u/u, i3
.0
T  p. 1 — g,  Se.n
e A @
T. »p & 8w
where
g. =TT, = (1 = S UT,IT.)
. . N : . pe/poo
The various boundary-layer thicknesses mentioned earlier can
be written nondimensionally as®
12
58, 2 faS. + C.,g.f)
el oot B L o
s (20 + 1)Re, 1 -8,
2 1.0
&* 2 S, + Cag. 4.0 6.0 M 8.0
s | (2o + DRe, 1 -8, °

b_¢

N N

2 2 §
- [(20’ + 1)R€>\] S

0.4696, m,. = 3.4717, and

where the constants are f7,
C, = 1.2168.

Results

Figures 2—4 show inviscid surface results for the pressure,
temperature, and Mach number. The barely discernible cross-
over in the 6, = 15-deg curves near M., = 5 in Fig. 4 should
be disregarded. It is caused by the M, = 4 error previously
discussed. The pressure and temperature values are larger for
the wedge than for the cone, where the opposite trend holds
for M,. For given values of M., and 6, the shock is weaker
for the cone (e.g., see B in Table 1), but there is a further
compression as a streamline approaches the cone’s surface.
As a consequence of these two effects, M, differs only slightly
between the wedge and cone.

The drag coefficients are normalized with the base area

A, = 2/ tan 8 [(7/2)] tan 6, ]"

The wave and viscous drags are

D, = (p. = p.)A,

/iu.
. cos 6, f Ty

[¢]

D dA

where A, is the surface area from the apex to s
A,. = 2s[(7/2)s sin 6,]”

and the wetted surface area A, is its value when s = [ sec 6,

We thus obtain
k4 [ Hy
"] tan 0,‘,> _f“

3]/2

Relll

w

D, = 2%*(puw), (

10.0

Fig. 2 Inviscid surface pressure as a function of M., .
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Fig. 4 Inviscid surface Mach number as a function of M.,.
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\‘_\“‘\ 9,.=15°, 6=0
02t ‘\\*“”’*—~» ) ’ \. ]
__________ 0,=15°, o=1
C
Dw | e 8,10, 0=0
0.1 S
8,=10°, o=l
\ 8,=5°, =0
— =
6,=5", o=1
0.0 ' A
0 6.0 8.0 10.0

M.

Fig. 5 Global wave drag coefficient as a function of M...

0.03

0.01 |

4.0 6.0 8.0 10.0

M.

Fig. 6 Global viscous drag coefficient as a function of M.

where Re, (see nomenclature) is proportional to Re,. The drag
coefficients thus become

D.. 2 P
C i — W — _t —_ 1
"g.A, yM2 (p-/. )
fo

. 232+ 0 . T-,, u, - i
Cp = i = B (Be) =l (3)
q. A, 372 p, T, \U.,/ Re!*tan @,

where C,,. + C,,, is the total drag coefficient associated with
the wetted surface area. Ratios such as p,/p.. and T,/T,, are
provided by the HSDT formulas of the preceding section.

Figure 5 shows that the wave drag coefficient is nearly
independent of M., particularly for a slender body. Hence,
D, is roughly proportional to MZ. As indicated in Fig. 6,
there is little difference between the wedge and cone Cp,
values. Although both coefficients are normalized with A4,
C,,. increases with 6,., whereas C,, has the opposite trend.
The shock strengthens with 6,,, which causes C,,, to increase.
On the other hand, the tan 6, factor in Eq. (3) is responsible
for the C,,,. trend. A comparison of Figs. 5 and 6 shows the
dominance of the wave drag, except when 6, is small. Of
course, any such comparison also depends on the value of
Re,.

The heat transfer is written as

172
aT 20 + 1 cu,T, - g.
4o = —x, (—) - —< 7 Res) Gtteln (L=8u) g
on/ 2 s g

HYPERSONIC FLOW

6x10" , ,

St

4x10™

2)(10-440 6‘0 50 10.0
. . M” . .

Fig. 7 Local Stanton number as a function of M..

-1x10° ,

-3x10°

-5x10°

-7x10° ; .
4.0 6.0 M. 80 10.0

a)

-5x10°

7x107 4.0 6.0 T80 10.0
. . Mw . .

b)

Fig. 8 Global heat transfer coefficient as a function of M_; T,/T, =
a) 1 and b) 3.

and the local Stanton number is

q,. 3(:/:]0/“
St = - ' 4
C/)(Tm.‘ - T,)(pu), (2Re)'? (4)

The connection between any local quantity with a Re; "' de-
pendence and its global counterpart is given by

1 i, dA z ()'L E—Z:—.IQ 1/2 1 5
0 Re”’ 3) T.\p. u Re!sin 6, ©)

Figure 7 shows the curves for the Stanton number in two
groups because of the 3¢ factor. Within each group the curves
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are proportional to Re, '? and are only weakly dependent on
M,. A Prandtl number correction can be introduced with
Colburn’s analogy® by multiplying the right side of Eq. (4)
with Pr-23. Thus, the Stanton number values in Fig. 7 should
be increased by about 25% for air.

A more convenient heat transfer parameter would be global
and normalized in 2 manner similar to the drag coefficients.
We thus introduce

1 Ay
~ (pU?).A, Jo
222 p. T, u, (1 — g%

32 p, T, U,S,Re sin 8,

Qw q,dA,,

where Eq. (5) is utilized. Figure 8 shows Q,, for (T,,/T,) =
1 and 3, where Q,, is negative when the heat transfer is into
the wall. The figures show a weak dependence on o, but a
steadily increasing value for |Q,.| with M.,.

At hypersonic speeds, a constant wall temperature bound-
ary layer with 1 > g has a significant temperature overshoot,
which is caused by viscous dissipation. The peak temperature
T,, and its location 7, are obtained as

T, (1 - g
—1 Sk
T, 4., (6a)
Fn) = 552 (6t
7’!71 - 2S )

e

by differentiating Eq. (2) with respect to n. The general in-

T /T =1
/o 8,=15°, =0
9,~10°, 6=0

5.5
Tm/Too

35+

1'54 0 6.0 8.0 10.0
a) . . Mw . .

7.0 | TW/Te=3
T/,

50 |

3'04 0 6I0 sjo 10.0
b) . . Mw . .

Fig.9 Maximum temperature inside the boundary layer as a function
of M,; T,/T, = a)1 and b) 3.
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version of the 7 integral definition is given in Ref. 3. For the
problem at hand, this yields

112
n 1 2
: 1_&L%+U&J{&m (1~ &)f(n,)

= SIf'(m,) + fm)f () = £l

where 7, is determined by Eq. (6b), and an accurate solution
of Egs. (1) yields f(n,,), f'(n,,), and f"(n,,). The above equa-
tion shows that n,, ~ s'2. From Eq. (6a), the peak temperature
becomes infinite when g, — 0.

Figure 9 shows that T,,/T, is barely altered by either ¢ or
6,.. which is in sharp contrast to the inviscid result of Fig. 3.
There is a strong dependence on T,/T,, and on M., which is
caused by viscous dissipation heat production. Figure 10 shows
m, for (T./T,) = Land 3. When (T,/T.) = 1, n,, is between
1.1-1.25 and has a weak dependence on M... The curves are
quite different when (T,/T,) = 3, where they increase rapidly
with M., especially when M., is relatively small. The location
of T,, in the physical plane is shown in Fig. 11, where we
observe that n,, is larger for a wedge than for a cone. The
corresponding difference is much less for 7,,. Also evident is
that the location of the peak temperature is closest to the wall
when 6, 1s large and o = 1. This conclusion is in accord with
the earlier Stanton number result.

Results are given for three boundary-layer thicknesses, since
5, = 6 and ¢ = 0 with the current assumptions. Curves for
&/s are shown in Fig. 12, where the wedge has the larger
boundary-layer thickness. Displacement thickness results are
shown in Fig. 13. Although the magnitude of 6* is substan-
tially less than 8, the trends are similar. Figure 14 shows the
momentum thickness whose magnitude is well below that of

T/T =1

1.25

e

8.0 10.0
M,

0'44 0 6I0 slo 10.0
N ) ' M, ® .

Fig. 10 Transformed coordinate ,, as a function of M_; T /T, =
a) 1 and b) 3.
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45x10° : .

3.5x10°

n./s

2.5x10°

1.5x10°

5x10" 4.0 ?0 8I0 10.0
a) . . M . B

| T/T3

45x10°

35x10°

n,/s
as5x10” 7
1.5x10° [

0,=15", 0=1

510 4.0 6I0 8IO 10.0
b) . . Mw . .
Fig. 11 Physical coordinate n,, as a function of M.; T, /T, = a) 1
and b) 3.

T/

1x10*

o/s

6x10°

2X10‘34 0 6I0 8‘0 10.0
a) - . M - . .

1.2x10%

ax10°
d/s

6x10°

3x10” 4.0 6‘0 8I0 10.0
. . M.n . .

b)
Fig. 12 Velocity and thermal thicknesses as a function of M_; T, /T
= a) 1 and b) 3.

HYPERSONIC FLOW

T/T.=1

7x10°

*

d/s

4x10°

ix10° =
4.0

a)
1.1x10?

8x10°

*

o/s

5x10°

2X10.34 0 6‘0 8I0 10.0
b . . Mw . .

Fig. 13 Displacement thickness as a function of M.; T, /T, = a) 1
and b) 3.

6x10™

0/s

4x10™

210" 4.0 6'0 8‘0 10.0
. . Mw . .

Fig. 14 Momentum defect and stagnation enthalpy defect thicknesses
as a function of M...

8*. Moreover, there is no dependence on T,/T., little de-
pendence on M., and the wedge and cone values are segre-
gated.

Concluding Remarks

A parametric treatment is provided for hypersonic flow
over a wedge and a cone at zero angle of attack. The analysis
combines hypersonic small-disturbance theory with laminar
boundary-layer theory. Results are grouped into four cate-
gories. In the first, inviscid surface values for the pressure,
temperature, and Mach number are given. The second cat-
egory encompasses wave and skin friction drag coefficients
and two heat transfer parameters. The third category provides
the maximum temperature and its location within the bound-
ary layer. The final group provides a variety of viscous and
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thermal boundary-layer thicknesses. All results are nondi-
mensional and are in a convenient form for establishing trends
and correlating experimental or CFD data.

An important extension of the analysis occurs when the
upstream flow is nonuniform but still paralle} to the centerline
or symmetry axis. With a cone, the flow must still be axisym-
metric. Thus, the flow upstream and downstream of the bow
shock is vortical and possesses a transverse gradient of the
stagnation enthalpy and/or of the entropy. This vortical flow
can be analyzed in terms of the previously given inviscid re-
sults using the substitution principle.* External vorticity and
a transverse gradient of entropy or stagnation enthalpy alter
the skin friction, heat transfer, boundary-layer thicknesses,
etc. The resultant change in viscous properties can be assessed
with second-order boundary-layer theory,* which would also
assess the effect of displacement and transverse curvature.
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