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Hypersonic Inviscid and Viscous Flow over a Wedge and Cone

K. K. Leung* and G. Emanuelt
University of Oklahoma, Norman, Oklahoma 73019

An analysis of hypersonic flow over a wedge and cone is developed that is based on hypersonic small-
disturbance theory in combination with laminar boundary-layer theory. The parameters that determine the
flow are the ratio of specific heats ( = 1.4), the freestream Mach number, which ranges from 4 to 10, the wall
half-angle, equal to 5, 10, or 15 deg, a wall to freestream temperature ratio, equal to 1 or 3, a Reynolds number
(= 106), and a geometric parameter that is zero for a wedge and unity for a cone. All results are nondimensional
and in a convenient form for establishing trends or for comparisons with experimental or CFD data. Results
are provided for the inviscid surface values of the pressure, temperature, and Mach number; wave and viscous
drag coefficients and several heat transfer coefficients; the maximum temperature and its location inside the
boundary layer; and a variety of viscous and thermal boundary-layer thicknesses. The independent parameter
is the freestream Mach number; the dependence on the wall to freestream temperature ratio and a Reynolds
number are explicitly given.
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drag coefficient
specific heat at constant pressure
drag
boundary-layer stream function
stagnation temperature ratio, T()IT()C
hypersonic similarity parameter, M.J3
hypersonic similarity parameter, MX0
body length
Mach number
coordinate normal to the wall
Prandtl number
pressure
global heat transfer parameter
heat transfer
freestream dynamic pressure, iy/?~,.MJ
freestream Reynolds number, (pU/fJL)J
boundary-layer Reynolds number, (pulfj,)es
Reynolds number based on wall length,
(pJpJ(TJTe)2(uJUJ(Re,lcos 0W)
radial coordinate
speed parameter,
[(y - 1)/2]M2/{1
Stanton number
coordinate along the wall measured from the apex
temperature
freestream speed
flow speed parallel to the wall
shock wave angle
ratio of specific heats
velocity boundary-layer thickness, equals n when
/' - 0.99
thermal boundary-layer thickness, equals n when
(g ~ gw) = 0-99(1 - gw)
displacement thickness, /„ [1 - (pulpc,u^] dn
similarity variable, [(pu)er\TJ(2£)112} /'<; (p/pj dn
velocity angle relative to the centerline

[(y -
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9 = momentum defect thickness,
/J (pw/p,M,)[l -(u/ue)]dn

K = thermal conductivity
jit, = viscosity
£ = boundary-layer wall coordinate, (pnu)es(?s2 sin20M,)""
p = density
cr = 0 for a wedge, 1 for a cone
r = shear stress
<t> — stagnation enthalpy defect thickness,

385

Subscripts
b = base
c = cone
d = conditions just downstream of the shock
e — boundary-layer edge
m = temperature maximum inside the boundary layer
v = viscous
w = wall, wedge, or wave
0 = stagnation
sc = freestream

Superscripts
'_ = derivative with respect to 17

= indicates s is replaced with / sec 6W

Introduction

H YPERSONIC flow over simple shapes has been of in-
terest for some time.1 2 Previous studies often focus on

a specific application or phenomenon such as viscous inter-
action. There is thus a need for a simple inviscid/viscous treat-
ment of flow properties and parameters associated with hy-
personic flow over a wedge and cone at zero incidence. Our
objective is to provide trends in a convenient format for com-
parison or correlation with experiment or other theoretical/
computational studies. Thus, the direction of a trend can be
assessed, and the possible need to incorporate additional fac-
tors, e.g., base drag, established. Moreover, this approach
can be the starting point for more elaborate analysis. For
example, the maximum temperature formulation can be used
to assess the onset of vibrational relaxation, air dissociation,
or radiative heat transfer.

Hypersonic small-disturbance theory (HSDT) is combined
with a laminar boundary-layer analysis. The analysis assumes
a nonreacting perfect gas with no radiative heat transfer. The
freestream Mach number M% and cone or wedge half angle
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0,,., satisfy the hypersonic small disturbance requirement that
K0 is of order unity. Hence, the bow shock is attached and
viscous interaction is neglected. For the boundary layer, the
wall is assumed to have a constant temperature, and the Prandtl
number and Chapman-Rubesin parameter are unity.3

Nondimensional results are determined by y, M.x, 0,v, Twl
T,, cr, and Re,. For these parameters we take y = 1.4, 4 <
Af, < 10, 8W = 5, 10, 15 deg, TJT^ = 1, 3, and Re, = 106.
The upper limit on M~,_ stems from the neglect of viscous
interaction, real gas effects, and radiative heat transfer. When
Af, = 10 some of these effects may start to become significant.
The ranges chosen for Mv. and 8W yield 0.349 < K« < 2.62,
which is a nominal range for hypersonic flight. The temper-
ature ratios of 1 and 3 are, respectively, for cold and hot wall
surfaces. One Reynolds number value is sufficient, since those
quantities that depend on it scale as Re, 1/2. Moreover, for a
sharp cone or wedge with a smooth surface in free flight, the
laminar regime corresponds to a Reynolds number well in
excess of 106 (Refs. 4 and 5).

Results are presented in four categories. The first provides
inviscid surface conditions for the pressure, temperature, and
Mach number. The next group consists of wave and viscous
drag coefficients and two heat transfer coefficients. Base drag
is not included, i.e., the base pressure is assumed equal to
/?.,.. One heat transfer coefficient is the local Stanton number,
whereas the second coefficient is the global heat transfer that
is conveniently normalized in a manner similar to the drag
coefficients. The third group provides the maximum temper-
ature inside the boundary layer and its location in both the
transformed and physical planes. The last group contains re-
sults for commonly encountered viscous and thermal thick-
nesses. These include the velocity, thermal, displacement,
momentum defect, and stagnation enthalpy defect thick-
nesses.

In line with the above goals, it is more convenient to use
Af, as the principle independent parameter rather than KH.
This choice is partly motivated by the dominance of viscous
results for which My. is an appropriate choice. Thus, result
figures contain six curves, three for the wedge and three for
the cone, where the curves correspond to the different 6W
values. Hence, for a given parameter, more than one figure
is required only when TJT.,_ is significant. Further details and
results can be found in the thesis6 on which this article is
based.

Formulation
For purposes of clarity, we succinctly summarize the HSDT

and boundary-layer equations. The shock wave angle /3 (see
Fig. 1) and velocity turn angle 6({ are related by

tan(/3 - 0,,) = 1 + [(y - l)/2]Ml sin2

y + 1 Ml sin /3 cos /3

With the introduction of the HSDT limit, we have

v v _ 2 1 + [(y - 1)/2]K|

In the wedge case, the inviscid flow between the shock and
wedge is uniform and 0(/ is replaced with 0 ( = 0,,,), with the
result

In the cone case, 0,, =f= 0,,., and the approximation7

Kf,. = {1 + [(y + l)/2]Ks}"2

is utilized, where again 0 = 0,v.

Fig. 1 Schematic for flow over a wedge or cone.

For the wedge, it is sufficient to write the exact planar shock
jump conditions and apply HSDT to directly obtain

Te _ 2 I + [(y - 1)/2]K|H. p,
T,. y + 1 K%w p..

M.. = M-, 1 + [(y -
*» - [(y -

M,
M..

Similar HSDT results for the conex are

(y -

KH
*.-„.,

Table 1 compares HSDT and exact results just downstream
of the shock and on the surface. Two cases are shown, both
have KH = 1.047, where the exact results for the cone stem
from Sims.9 Agreement between HSDT and the exact results
is excellent. The largest error is in the Me (or M(l) wedge value
when My_ = 4, where the error is - 10%. This error does not
extend to the other My, = 4 wedge values, e.g., the pjpy, (or
/?,,//?-,) value is in error by only 1%. Moreover, it does not
extend to the My, = 4 cone case, where the error in Me is
only 0.6%. The error in Me for a wedge rapidly decreases
with A/.,.; it is only -4% at Af, = 6.

In line with the earlier discussion, the boundary-layer pres-
sure gradient parameter is zero and a similar solution is as-
sumed. We thus have the Blasius equation

r + ff" = o, /„, = /;, = o, = i
where (u/ue) = df/drj = f . The solution of the energy equa-
tion is

fe - £,,)/(! - £,,) = f
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Table 1 Comparison of exact and HSDT solutions just downstream of the shock and on the surface
for a wedge and a cone

M^ = 4, 0U. = 15 deg
Wedge Cone

Exact HSDT Exact HSDT

/3, deg 27.06 25.92 21.79 21.80
Md 2.929 3.225 3.321 3.286
Me 2.929 3.225 3.217 3.197
ptllpv 3.697 3.653 2.406 2.535
pjp, 3.697 3.653 2.801 2.858
Td/Ty 1.547 1.539 1.310 1.335
TV/71. 1.547 1.539 1.368 1.383

which yields the quadratic3 in u/ue

r i C
r\v i o>*' ri <-' /•/"> /O\

r. - P - A ' *„ 7 s,f w

where

S... = TJT0f = (1 - SJ(TJTJ

The various boundary-layer thicknesses mentioned earlier can
be written nondimensionally as3

5 s, r 2 i"2 / /:A + c,.g,,,\
* 5 |_(2cr + l)/tej ^"' C' 1 - S, )

8* \ 2 ]"2//:,.5, + c,,g,,.\
5 L(2tr + l)/?e,J \ 1-5, /

r n "2

* = * = [ 2 ] /"

where the constants are /", = 0.4696, j]ev = 3.4717, and
C,, - 1.2168.

Results
Figures 2-4 show inviscid surface results for the pressure,

temperature, and Mach number. The barely discernible cross-
over in the 0M. = 15-deg curves near M^ = 5 in Fig. 4 should
be disregarded. It is caused by the M^ = 4 error previously
discussed. The pressure and temperature values are larger for
the wedge than for the cone, where the opposite trend holds
for Me. For given values of M-, and 0U., the shock is weaker
for the cone (e.g., see /3 in Table 1), but there is a further
compression as a streamline approaches the cone's surface.
As a consequence of these two effects, Me differs only slightly
between the wedge and cone.

The drag coefficients are normalized with the base area

Ah = 21 tan 0U,[(W2)/ tan 0M,]"

The wave and viscous drags are

Dv = cos 6W " rw dA
JO

where Aw is the surface area from the apex to s

Aw = 2s[(ir/2)s sin 02]tr

and the wetted surface area Aw is its value when s — I sec Ow.
We thus obtain

Mx = 6, 0,, = 10 deg
Wedge Cone

Exact HSDT Exact HSDT

17.59 17.28 14.35 14.53
4.648 4.837 5.124 5.074
4.648 4.837 4.993 4.966
3.668 3.653 2.414 2.535
3.668 3.653 2.810 2.858
1.541 1.539 1.312 1.335
1.541 1.539 1.370 1.383

13.0

9.0

)e/Poo

5.0

1.0
4

Fig. ,

3.0

2.0

1.0
A

Fig. 3

9.0 r

7.0

5.0 -

Q n .

ew=i5°,o=o ,''
^*^ '

.'''' s-'' ew=io°,o=oN.....

>-''" <,^'"''* ..... ...---""" Ow=10°, o=l

0 6.0 .. 8.0 10.0
Moo

I Inviscid surface pressure as a function of M^

6W=15°, 0=0
>' '

^'''' ^.'"'0W=15°, o=l

^-"' ^''' ew=io°,o=ov.....---" -

''' \~'''' ...----"" ..-----""""" §w= 1 °°' a=1

kO 6.0 mm 8.0 10.0
Moo

Inviscid surface temperature as a function of Af , ...

ew=5°, 0=1 ./
ew=5°, 0=0 /^/^

// ...,.-:;;'-'- --"""ew=io°f 0=0

^^•:^ . - ̂  ' ' ' ' ' ' ' 9w=l 5°, o-i y
^^^ . '*******'' ' 0W=15°' a=°

4.0 6.0 y 8.0 10.0

Fig. 4 Inviscid surface Mach number as a function of Af,.



388 LEUNG AND EMANUEL: HYPERSONIC FLOW

0.2

0.1

0.0

ew=15°,a=0

-15°, a-1

ew=io°,a=o

0W-10°, a-1

"4.0 6.0 8.0 10.0
Moo

Fig. 5 Global wave drag coefficient as a function of Mx.
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Fig. 7 Local Stanton number as a function of My..
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Fig. 6 Global viscous drag coefficient as a function of M.,_.

where Res (see nomenclature) is proportional to Re,. The drag
coefficients thus become

yMl \p

Dr
3/2 + tr pe

~
ue

LLj Ref- tan (3)

where CI)H. + CDr is the total drag coefficient associated with
the wetted surface area. Ratios such as pjp^ and TJT^ are
provided by the HSDT formulas of the preceding section.

Figure 5 shows that the wave drag coefficient is nearly
independent of A/y_, particularly for a slender body. Hence,
Dw is roughly proportional to M2 . As indicated in Fig. 6,
there is little difference between the wedge and cone CDv
values. Although both coefficients are normalized with Ah,
Cf)w increases with Ow, whereas CDv has the opposite trend.
The shock strengthens with Ow, which causes CDw to increase.
On the other hand, the tan 6W factor in Eq. (3) is responsible
for the CDr trend. A comparison of Figs. 5 and 6 shows the
dominance of the wave drag, except when 6W is small. Of
course, any such comparison also depends on the value of
Re,

The heat transfer is written as

dT
—dn

•Re,

Q

-1x10"

-3x10"3

i
w

-5x10"3

-7x10"3

a)
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Q,'W
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-7x10"

)w=10 , a=0

6.0 IVL 8.0 10.0

10.0
b)

Fig. 8 Global heat transfer coefficient as a function ofM,; TjTy. =
a) 1 and b) 3.

and the local Stanton number is

St =
cP(Tl}w - Tl}e)(pu)e (2/te,)"2 (4)

The connection between any local quantity with a Re~l/2 de-
pendence and its global counterpart is given by

_±_ i dA» = 9 I - I lz\£±^
Ah Jo Re\'2 ~ \3j 7» \pe i'

i
Re\12 sin (5)

Figure 7 shows the curves for the Stanton number in two
groups because of the 3"/2 factor. Within each group the curves
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are proportional to Re~1/2 and are only weakly dependent on
M^_. A Prandtl number correction can be introduced with
Colburn's analogy3 by multiplying the right side of Eq. (4)
with Pr 2/\ Thus, the Stanton number values in Fig. 7 should
be increased by about 25% for air.

A more convenient heat transfer parameter would be global
and normalized in a manner similar to the drag coefficients.
We thus introduce

j_ r-
3)~^v4/, Jo

2<r i/2 pc T;. ue (i - gj/;;.
3<r/2 p^. Te U~,_ S^Rel12 sin 6W

where Eq. (5) is utilized. Figure 8 shows Qw for (TW/T^) =
1 and 3, where Qw is negative when the heat transfer is into
the wall. The figures show a weak dependence on a, but a
steadily increasing value for \QH,\ with M^.

At hypersonic speeds, a constant wall temperature bound-
ary layer with 1 > gw has a significant temperature overshoot,
which is caused by viscous dissipation. The peak temperature
Tm and its location j]m are obtained as

2S.,

(6a)

(6b)

version of the 17 integral definition is given in Ref. 3. For the
problem at hand, this yields

by differentiating Eq. (2) with respect to 17. The general in-

where rjm is determined by Eq. (6b), and an accurate solution
of Eqs. (1) yields/(TJ,,,),/'(77,,,), and/"(r//;;). The above equa-
tion shows that nm ~ sl/2. From Eq. (6a), the peak temperature
becomes infinite when gw —> 0.

Figure 9 shows that T,JT^ is barely altered by either cr or
0,,., which is in sharp contrast to the inviscid result of Fig. 3.
There is a strong dependence on TJT^, and on M.,,,, which is
caused by viscous dissipation heat production. Figure 10 shows
r?m for (TJTJ = 1 and 3. When (TJTJ = 1, 77,,, is between
1.1-1.25 and has a weak dependence on My_. The curves are
quite different when (TJT^) = 3, where they increase rapidly
with A/y_, especially when A/-,, is relatively small. The location
of Tm in the physical plane is shown in Fig. 11, where we
observe that nm is larger for a wedge than for a cone. The
corresponding difference is much less for 77,,,. Also evident is
that the location of the peak temperature is closest to the wall
when 0M. is large and a = 1. This conclusion is in accord with
the earlier Stanton number result.

Results are given for three boundary-layer thicknesses, since
8, = 8 and 4> = 0 with the current assumptions. Curves for
8/s are shown in Fig. 12, where the wedge has the larger
boundary-layer thickness. Displacement thickness results are
shown in Fig. 13. Although the magnitude of 5* is substan-
tially less than 8, the trends are similar. Figure 14 shows the
momentum thickness whose magnitude is well below that of

1.25

10.0

10.0

Fig. 9 Maximum temperature inside the boundary layer as a function
of My; TJT^ = a) 1 and b) 3.

10.0

10.0

Fig. 10 Transformed coordinate r/w as a function of My; TjTy =
a) 1 and b) 3.
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Fig. 11 Physical coordinate nm as a function of M,.; TJTV = a)
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Fig. 12 Velocity and thermal thicknesses as a function of M,_; !
= a) 1 and b) 3.
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Fig. 13 Displacement thickness as a function of M^; TWITV_ = a) 1
and b) 3.
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Fig. 14 Momentum defect and stagnation enthalpy defect thicknesses
as a function of M^.

6*. Moreover, there is no dependence on TJT^, little de-
pendence on M^,, and the wedge and cone values are segre-
gated.

Concluding Remarks
A parametric treatment is provided for hypersonic flow

over a wedge and a cone at zero angle of attack. The analysis
combines hypersonic small-disturbance theory with laminar
boundary-layer theory. Results are grouped into four cate-
gories. In the first, inviscid surface values for the pressure,
temperature, and Mach number are given. The second cat-
egory encompasses wave and skin friction drag coefficients
and two heat transfer parameters. The third category provides
the maximum temperature and its location within the bound-
ary layer. The final group provides a variety of viscous and
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thermal boundary-layer thicknesses. All results are nondi-
mensional and are in a convenient form for establishing trends
and correlating experimental or CFD data.

An important extension of the analysis occurs when the
upstream flow is nonuniform but still parallel to the centerline
or symmetry axis. With a cone, the flow must still be axisym-
metric. Thus, the flow upstream and downstream of the bow
shock is vortical and possesses a transverse gradient of the
stagnation enthalpy and/or of the entropy. This vortical flow
can be analyzed in terms of the previously given inviscid re-
sults using the substitution principle.3 External vorticity and
a transverse gradient of entropy or stagnation enthalpy alter
the skin friction, heat transfer, boundary-layer thicknesses,
etc. The resultant change in viscous properties can be assessed
with second-order boundary-layer theory,3 which would also
assess the effect of displacement and transverse curvature.
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